Nucleon structure from $N_f = 2 + 1$ DWF simulations

Takeshi YAMAZAKI

T. Blum, H-W. Lin, S. Ohta, K. Orginos, and S. Sasaki for RBC-UKQCD Collaboration

Domain Wall Fermions at Ten Years @ BNL March 15-17, 2007

Outline

- 1. Introduction
- 2. Simulation parameters
- 3. Preliminary results
 - \bullet g_A/g_V
 - Moments of quark distributions
 - Form factors
- 4. Summary

1. Introduction Motivation:

understand nucleon structure from first principle

We calculate matrix elements related to nucleon structure on $N_f=2+1$ DWF configuration.

- g_A/g_V Well determined experimentally: $g_A/g_V=1.2673(35)$
- Moments of quark distributions Deep inelastic scattering; structure functions $\langle x \rangle_q \to \text{Unpolarized: } F_1(x,Q^2), F_2(x,Q^2) \ \langle x \rangle_{\Delta q} \to \text{Polarized: } g_1(x,Q^2), g_2(x,Q^2)$
- Form factors
 Elastic scattering

$$F_1(q^2) = \frac{1}{(1+q^2/M_V^2)^2}, \quad \langle r_{ch}^2 \rangle = 12/M_V^2,$$

 $G_A(q^2) = \frac{g_A}{(1+q^2/M_A^2)^2}, \quad \langle r_{ax}^2 \rangle = 12/M_A^2$

RBC-UKQCD generated $N_f=2+1$ dynamical configuration.

- 1. u,d quark mass is as lower as $m_\pi=310$ MeV. Investigation of nucleon structure in chiral regime
- 2. Chiral symmetry on lattice
- 3. Physical volume 3 fm

Chiral symmetry on lattice

If chiral symmetry is exact, $Z_V = Z_A$ at chiral limit.

 Z_V is determined by Nucleon form factor $Z_V g_V^{\;lat} = F_1(\mathbf{0}) = \mathbf{1}$

 Z_A is determined by Conserved axial-vector current \mathcal{A}_0

 Z_A is consistent with Z_V within 2% at chiral limit.

Finite volume effect of nucleon matrix element

 g_A/g_V is a simple, basic physical quantity of nucleon structure.

It is easy to calculate with DWF due to $Z_V/Z_A \approx 1$.

Large finite volume effect is seen in heavy m_{π} region.

 g_A/g_V at 2.4 fm almost agrees with one at 3.6 fm.

 $L \approx 2.5$ fm is enough for nucleon calculation.

RBC-UKQCD generated $N_f = 2 + 1$ dynamical configuration.

- 1. u,d quark mass is as lower as $m_\pi=310$ MeV. Investigation of nucleon structure in chiral regime
- 2. Chiral symmetry on lattice $Z_V = Z_A$ is satisfied within a few %.
- 3. Physical volume 3 fm $\mbox{Volume is large enough for nucleon calculation, based on } N_f = 0 \\ \mbox{calculation.}$

3. Simulation parameters

- $N_f = 2 + 1$ Iwasaki gauge + Domain Wall fermion actions
- $\beta = 2.13 \ a^{-1} = 1.62 \ \text{GeV} \ M_5 = 1.8 \ m_{\text{res}} = 0.003$
- Lattice size $24^3 \times 64 \times 16$ ($La \approx 3$ fm)
- $m_s = 0.04$ fixed (close to m_s^{phys})
- quark masses and confs.

m_f	$m_{\pi}[{\sf MeV}]$	$\#$ of confs. \times N_{meas}
0.005	310	52 × 4
0.01	390	119 × 4
0.02	520	49 × 4
0.03	690	53 × 4

Results at two lighter masses do not have good accuracy, so that all results are preliminary.

• We focus only on iso-vector quantities. (no disconnected diagram)

4. Preliminary results

4.1. g_A/g_V

 m_π is lighter than m_π in $N_f=0$ case.

Results at two lighter m_{π} has larger error and fluctuation.

There seems to be no dynamical effect.

Preliminary result

$$g_A/g_V = \begin{cases} 1.22(10) & \text{(lat.)} \\ 1.267(4) & \text{(exp.)} \end{cases}$$

We will confirm the result is reliable by improving statistics.

4.2. Moments of quark distributions

Unpolarized : $\langle x \rangle_{u-d}$

Polarized : $\langle x \rangle_{\Delta u - \Delta d}$

If chiral symmetry is exact, renormalizations of $\langle x \rangle_{u-d}$ and $\langle x \rangle_{\Delta u-\Delta d}$ are same.

Result is consistent with experiment as well as in $N_f=$ 0 case.

However, ...

4.2. Moments of quark distributions (cont'd)

Each component in $N_f = 0$ is independent of m_{π} .

 $\langle x \rangle_{u-d}$ and $\langle x \rangle_{\Delta u-\Delta d}$ are closer to experiment, and have some m_π dependence.

Perturbative Z(2GeV) = 0.88(5) from PLB641,67 \rightarrow We will calculate Z factor by non-perturbative method. Preliminary result

4.3. Form factors

Iso-vector form factors $F_i^p - F_i^n$

$$\langle N, p | V_{\mu}(q) | N, p' \rangle = \langle N, p | F_{1}(q^{2}) \gamma_{\mu} + i \sigma_{\mu\nu} q_{\nu} \frac{F_{2}(q^{2})}{2M_{N}} | N, p' \rangle$$

$$\langle N, p | A_{\mu}(q) | N, p' \rangle = \langle N, p | G_{A}(q^{2}) i \gamma_{5} \gamma_{\mu} + i \gamma_{5} q_{\mu} G_{P}(q^{2}) | N, p' \rangle$$

$$q = p' - p, \left(\frac{Lp'}{2\pi} \right)^{2} = 0, 1, 2, 3, 4$$

$$F_1(q^2) = \frac{1}{(1+q^2/M_V^2)^2}, \quad M_V = 0.858(8) \text{ GeV}$$
 $\langle r_{ch}^2 \rangle = 0.636(12) \text{ fm}$ $G_A(q^2) = \frac{g_A}{(1+q^2/M_A^2)^2}, \quad M_A = 1.07(2) \text{ GeV}$ $\langle r_{ax}^2 \rangle = 0.408(13) \text{ fm}$

 F_1 is almost independent of m_π except for lightest mass. G_A has m_π dependence.

4.3. Form factors (cont'd) $F_1(q^2)/F_1(0)$ $G_{A}(q^{2})/G_{A}(0)$ 0.8 0.8 0.6 0.6 $\overline{m_{\pi}}=0.31 \text{ GeV}$ \bullet m_{π}=0.3 $\overline{1 \text{ GeV}}$ 0.4 0.4 $m_{\pi} = 0.39 \text{ GeV}$ $m_{\pi} = 0.39 \text{ GeV}$ $m_{\pi}=0.52 \text{ GeV}$ $m_{\pi} = 0.52 \text{ GeV}$ 0.2 0.2 ▲ m_π=0.63 GeV Δ m_{π}=0.63 GeV experiment - · experiment 0.2 0.2 0.4 0.6 0.8 0.4 0.6 0.8

 F_1 is almost independent of m_π except for lightest mass. G_A has m_π dependence.

 $q^2[GeV^2]$

$$F_1(q^2) = \frac{1}{(1+q^2/M_V^2)^2}$$
 $G_A(q^2) = \frac{g_A}{(1+q^2/M_A^2)^2}$

 $q^2[GeV^2]$

Effective M_V and M_A Preliminary result

$$M_{V} = \sqrt{\frac{\sqrt{F_{1}(q^{2})} - 1}{q^{2}}}, \quad M_{A} = \sqrt{\frac{\sqrt{G_{A}(q^{2})/g_{A}} - 1}{q^{2}}}$$

$$M_{V} = \sqrt{\frac{\sqrt{F_{1}(q^{2})} - 1}{q^{2}}}, \quad M_{A} = \sqrt{\frac{\sqrt{G_{A}(q^{2})/g_{A}} - 1}{q^{2}}}$$

$$M_{A} = \sqrt{\frac{\sqrt{G_{A}(q^{2})/g_{A}} - 1}{q^{2}}}$$

$$M_{A} = \sqrt{\frac{\sqrt{G_{A}(q^{2})/g_{A}} - 1}{q^{2}}}$$

$$M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \, \text{GeV}}} M_{A} = \sqrt{\frac{m_{\pi} - 0.31 \, \text{GeV}}{m_{\pi} - 0.39 \,$$

Effective M_V and M_A are reasonably flat. M_V is almost independent of m_π except for lightest mass. M_A has m_π dependence.

4.3. Form factors (cont'd) $\overline{m_{\pi}}=0.31 \text{ GeV}$ $m_{\pi} = 0.31 \text{ GeV}$ $F_2(q^2)/F_1(0)$ $G_{p}^{lat}(q^2)$ $m_{\pi} = 0.39 \text{ GeV}$ $m_{\pi} = 0.39 \text{ GeV}$ $m_{\pi} = 0.52 \text{ GeV}$ $m_{\pi} = 0.52 \text{ GeV}$ 15 Δ m_{π}=0.63 GeV Δ m_{π}=0.63 GeV 10 Unrenormalized 0.2 0.2 0.6 0.4 0.8 0.40.6 0.8 $q^2[GeV^2]$ $q^2[GeV^2]$

 F_2 has m_π dependence, but one at lightest mass is much smaller. G_P is explained by pion pole in current algebra,

$$G_P(q^2) = \frac{2M_N G_A(q^2)}{q^2 + m_\pi^2}.$$

 F_2 at lightest mass is below experiment.

Normalized G_P by pion pole and G_A is almost consistent with current algebra, and close to experiment.

$$G_P(q^2) = \frac{2M_N G_A(q^2)}{q^2 + m_\pi^2}$$

Preliminary result

5. Summary

- We calculated nucleon matrix elements with $N_f=2+1$ dynamical domain wall fermions at light quark masses.
- All results are preliminary.
- We found encouraging and consistent results with experiments.

Future work

- ullet We will improve statistics of $m_f=0.005$ and $m_f=0.01$ data.
- Next calculation is on larger lattice size and smaller lattice spacing.